Biomedical Applications of Prototype Based Classifiers and Relevance Learning

نویسنده

  • Michael Biehl
چکیده

In this contribution, prototype-based systems and relevance learning are presented and discussed in the context of biomedical data analysis. Learning Vector Quantization and Matrix Relevance Learning serve as the main examples. After introducing basic concepts and related approaches, example applications of Generalized Matrix Relevance Learning are reviewed, including the classification of adrenal tumors based on steroid metabolomics data, the analysis of cytokine expression in the context of Rheumatoid Arthritis, and the prediction of recurrence risk in renal tumors based on gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can Prototype-Based Classification be a good Method for Biomedical Applications?

Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the fact that the disease is much rarer than the normal case. In such a situation classifiers such as decision trees and Naïve Bayesian that generalize over the data are not the proper choice as classification methods. Case-based classifiers that can work on the samples seen so far ar...

متن کامل

Prototype Classification: Insights from Machine Learning

We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both clas...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Classifying Biomedical Abstracts Using Committees of Classifiers and Collective Ranking Techniques

The purpose of this work is to reduce the workload of human experts in building systematic reviews from published articles, used in evidence-based medicine. We propose to use a committee of classifiers to rank biomedical abstracts based on the predicted relevance to the topic under review. In our approach, we identify two subsets of abstracts: one that represents the top, and another that repre...

متن کامل

BIOINFORMATICS Small, Fuzzy and Interpretable Gene Expression Based Classifiers

Motivation: Interpretation of classification models derived from gene expression data is usually not simple, yet it is an important aspect in the analytical process. We investigate the performance of small rule-based classifiers based on fuzzy logic in five data sets that are different in size, laboratory origin, and biomedical domain. Results: The classifiers resulted in rules that can be read...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017